In order to assess how the last sea level rise affected the Aegean archipelago, we quantified the magnitude and rate of geographic change for the Aegean islands during the last sea-level-rise episode (21 kyr BP–present) with a spatially explicit geophysical model. An island-specific Area-Distance-Change (ADC) typology was constructed, with higher ADC values representing a higher degree of change. The highest fragmentation rates of the Aegean archipelago occurred in tandem with the largest rates of sea-level-rise occurring between 17 kyr and 7 kyr ago. Sea-level rise resulted in an area loss for the Aegean archipelago of approximately 70%. Spatiotemporal differences in sea-level changes across the Aegean Sea and irregular bathymetry produced a variety of island surface-area loss responses, with area losses ranging from 20% to > 90% per island. In addition, sea-level rise led to increased island isolation …